Advanced Logic, Summary

H.M. (Lenie) Goossens (S4349113)

2A 2023-2024

 $\text{WFFS inductively.} \begin{cases} 1. \text{propositional atoms is wff in language...} \\ 2. \text{If } P \text{ wff in language..., then so is } \neg P \\ 3. \text{If } P, Q \text{ WFFS in language... then so} \\ 4. \text{Nothing is WWF in language... unless ...} \end{cases}$

 $v(\neg P) = 1 - v(P), v((P \land Q)) = \min\{v(P), v(Q)\}, v((P \land Q)) = \max\{v(P), v(Q)\} \\ v((P \to Q)) = \max\{1 - v(P), v(Q)\}, v((P \leftrightarrow Q)) = 1 - |v(P) - v(Q)|$

Logic def. by structure $\langle \mathcal{V}, \mathcal{D}, \{ f_c : c \in \mathcal{C} \rangle$. \mathcal{V} set of truth values, $\mathcal{D} \subseteq \mathcal{V}$ desig. values, \mathcal{C} set of connectives, $\forall c \in \mathcal{C}$ truth function $f_c : \mathcal{V}^n \to \mathcal{V}$

Example: propositional logic: $\mathcal{V} = \{0, 1\}, \mathcal{D} = \{1\}, \mathcal{C} = \{\wedge, \lor, \neg, \neg\}, \text{ so } f_{\wedge}(x, y) = \min(x, y), f_{\vee}(x, y) = \max(x, y), f_{\neg}(x) = 1 - x, f_{\neg}(x, y) = \max(1 - x, y)$

Note: $v(c(A_1,\ldots,A_n)) = f_c(v(A_1),\ldots,v(A_n)).$

 $\Sigma \models \text{iff } (\text{every } v \text{ s.t. } v(B) \in \mathcal{D} \text{ for all } B \in \Sigma, \text{ then } v(A) \in \mathcal{D})$

f_{\neg}		f_{\wedge}	1	i	0	f_{\vee}	1	i	0	f_{\supset}	1	i	0
1	0	1	1	i	0	1	1	1	1	1	1	i,0	0
i	i	i	i	i	0	i	1	i	i	i	1	$^{\mathrm{i},1,i}$	i, <mark>0</mark>
0	1	0	0	0	0	0	1	i	0	0	1	1	1

If the entry in the table does not have the colour corresponding to the name, then you have to take the black value.

Kleene, $\mathcal{V} = \{0, i, 1\}, \mathcal{D} = \{1\}$ and LP, $\mathcal{C} = \{0, i, 1\}, \mathcal{D} = \{i, 1\}$ Lukasiewicz, $L_3, \mathcal{V} = \{0, i, 1\}, \mathcal{D} = \{1\}$ RM3, $\mathcal{V} = \{0, 1, i\}, \mathcal{D} = \{i, 1\}.$ Tableux rules for prop connectives: Remember that $A \supset B$ implies $\neg A$ or B. $A \equiv B$ implies both A, B or both $\neg A, \neg B$. complete: every rule that can be applied has been applied. Prop. language. Branch is closed, if for some A, both $A, \neg A$ occur on its nodes.

4 valued logic (FDE): $q\rho$ 1: means q related to true, $q\rho$ 0, means q related to false. $(A \land B)\rho$ 1 iff $A\rho$ 1& $B\rho$ 1, $(A \land B)\rho$ 0 iff $A\rho$ 0 or, $B\rho$ 0. $(A \lor B)\rho$ 1 iff $A\rho$ 1 or $B\rho$ 1, $(A \lor B)\rho$ 0 iff $A\rho$ & $B\rho$ 0. $(\neg A)\rho$ 1 iff $A\rho$ 0, and $(\neg A)\rho$ 0 iff $A\rho$ 1. Semantic tableaux immediately follows, Morgan's law can be applied. Branch of tableaux is closed, if both A, + and A, – for some formula A. To test $A_1, \ldots, A_n \vdash_{\text{FDE}} B$, we start with A_i , + and B, –. Countermodel: For atoms p, if branch contains p, + set $p\rho$ 1. If branch contains $\neg p$, + set $p\rho$ 0. No other facts about ρ obtained. K3 Closed: Contains both A, + and $\neg A$, + LP Closed: Contains both A, + and $\neg A$, – For L3 and RM3 we will get the rules the FDE tabels for \neg .

Fuzzy logic: $\mathcal{V} = [0, 1]$, with $f_{\neg}(x) = 1 - x$, $f_{\wedge}(x, y) = \min(x, y)$ $f_{\vee}(x, y) = \max(x, y)$ and $f_{\rightarrow}(x, y) = \min(1, 1 - x + y)$

 $D = [\epsilon, 1]$ then $\Sigma \models A$ iff (for all v, if $v(B) \ge \epsilon$ for all $B \in \Sigma$, then $v(A) \ge \sigma$)

 $\epsilon = 1$, and therefore $\mathcal{D} = \{1\}$ then we have $L_{\mathcal{N}}$

 \square necessity, \diamond , possibility.

Language:

- 1. Each propositional atom is WFF
- 2. A is WFF of L, then so are $\neg A, \Box A, \diamond A$
- 3. A, B wff of L, then so are $(A \land B), (A \lor B), (A \supset B), (A \equiv B)$
- 4. Nothing is wff of L, unless combination of above.

World W, nonempty, worlds mentioned. $R \subset W \times W$ and $v : (W \times P) \rightarrow \{0, 1\}$ $v_w(p) = 1$ means p is true at world w.

2A 2023-2024

Extra rules:

 $v_w(\diamond A) = 1$ iff (there is a world $w' \in W$ such that wRw' and $v_{w'}(A) = 1$). $v_w(\Box A) = 1$ iff (for every world $w' \in W$ such that wRw' it holds that $v_{w'}(A) = 1$.)

 $\Sigma \vDash A$ iff

(for all models (W, R, v) and all $w \in W$: if $v_w(B) = 1$, for all $B \in \Sigma$, then $v_w(A) = 1$)

Tableau rules same. Extra:

$$\neg \Box A, i \quad \neg \diamond A, i \qquad \Box A, i \qquad irj \qquad \diamond A, i \\ \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \\ \diamond \neg A, i \qquad \Box \neg A, i \qquad A, j \qquad irj \\ A, j \qquad A, j \qquad A, j \qquad A, j \qquad A, j$$

Branch closed if A, i and $\neg A, i$ both occur on branch for same i.

Countermodel:

 $W = \{w_i | i \text{ on branch}\}, R = \{\langle w_i, w_j \rangle | irj \text{ occurs on branch}\}$ For propositional atoms p, so if p, i occurs on branch, then $v_{w_i}(p) = 1$. If $\neg p$, i occurs on branch, then $v_{w_i}(p) = 0$. Otherwise you can choose $v_{w_i}(p)$ arbitrarily.

 ρ means R reflexive, iff for all $w \in W, wRw$.

 σ means R symmetric iff for all $w_1, w_2 \in W$ (If $w_1 R w_2$, then $w_2 R w_1$) τ means R transitive, iff for all $w_1, w_2, w_3 \in W$ (if $w_1 R w_2, w_2 R w_3$, then $w_1 R w_3$) η means R extendable, iff for all $w_1 \in W$, there is $w_2 \in W$ s.t. $w_1 R w_2$.

Note that $\eta, \tau, \sigma \Rightarrow \rho$ υ means R universal, iff $w_1 R w_2$ for all $w_1, w_2 \in W$. φ : means R forward convergent iff for all $x, w, y \in W$, if x R y and R z, then (zRy or y = z or yR z). β : means R backward convergent iff for all $x, w, y \in W$, if yRx, zRx then (zRy or y = z or yRz). δ : means R is dense, iff for all $w, z \in W$ (if wRz then there is $y \in W$ s.t. wRy and yRz)

 $K_{\rho\sigma\tau}$ is called S5, so reflexive, symmetric and transitive.

Tense logic:

[..] A at all.. times A, $\langle .. \rangle A$ at some ... times A. So if .. = P, then earlier times, .. = F, future times. $v_w([P]A) = 1$ iff for all w' s.t. w'Rw, $v_{w'}(A) = 1$ $v_w([F]A) = 1$ iff for all w' s.t. wRw', $v_{w'}(A) = 1$ $v_w(\langle P \rangle A) = 1$ iff for some w' s.t. w'Rw, $v_{w'}(A) = 1$ $v_w(\langle F \rangle A) = 1$ iff for some w' s.t. wRw', $v_{w'}(A) = 1$. [F]A, iirj $\langle F \rangle A, i$ $\neg [F]A, i$ $\neg \langle F \rangle A, i$ \downarrow \downarrow \downarrow \downarrow A, j irj $\langle F \rangle \neg A, i$ $[F] \neg A, i$

If we replace F by P, and replace irj by jri, then we have all rules.

[..], apply to all on branch, $\langle .. \rangle$ apply to new on branch.

v arbitrary, b branch of tableau. v faithful to b, iff every formula D, that occurs on b, v(D) = 1

If v faithful to b, tableau rule applied to b, then v faithful to at least 1 of generated branches.

b branch *v* induced by *b*, if for every *p*, we have if *p* on branch, then v(p) = 1, if $\neg p$ on branch then v(p) = 0. Otherwise arbitrary.

If b complete, result also holds for D, instead of p.

 $I = \langle W, R, v \rangle$ and b any branch. Then I faithful to b if there is $f : \mathbb{N}_{\geq 0} \to W$ s.t.

- For every node D, I on b, we have D is true at world f(i) in I
- If irj on b, then f(i)Rf(j) in I

So we say f shows I faithful to b.

Ifaithful tob,tableau rule applied tob, then at least 1 extension of b, call it b' also satisfy I faithful to b'

 $I = \langle W, R, v \rangle$ induced by b iff:

- $W = \{w_i : i \text{ occurs on } b\}$
- $w_R w_j$ iff irj occurs on b.
- p, i on b, then $v_{w_i}(p) = 1$, if $\neg p, i \text{ on } b$, then $v_{w_i}(p) = 0$. Other. arbit.

b open complete, $I = \langle W, R, v \rangle$ induced by *b*. Then for all *D*, for all *i* following holds: *D*, *i* on *b*, then $v_{w_i}(D) = 1$, if $\neg D$, *i* on *b* then $v_{w_i}(D) = 0$. $v_w(Pa_1 \dots a_n) = 1$ iff $\langle v(a_1), \dots, v(a_n) \rangle \in v_w(P)$.

2A 2023-2024

 $v_w(\exists xA) = 1$ iff for some $d \in D$, $v_w(A_x(k_d)) = 1$ $v_w(\forall xA) = 1$ iff for all $d \in D$, $v_w(A_x(k_d)) = 1$. $A_x(k_d)$ is formula by substituting k_d for each free occurence of x in A, where k_d is constant s.t. $v(k_d) = d$.

First-order version: CK. $\Sigma \models A$ iff for every $I = \langle D, W, R, v \rangle$, and all $w \in W$: if $v_w(B) = 1$ for all $B \in \Sigma$, then $v_w(A) = 1$.

$$\neg \exists x A, i \quad \neg \forall x A, i \quad \forall x A, i \quad \exists x A, i \\ \downarrow \quad \downarrow \quad \downarrow \quad \downarrow \quad \downarrow \\ \forall x \neg A, i \quad \exists x \neg A, i \quad dx (a), i \quad A_x(c), i \\ \text{old } a \text{ oth. new} \quad \text{new } c \end{cases}$$

Variable domain version K, called VK.

$$\begin{split} I &= \langle D, W, R, v \rangle, D \neq 0 \text{ (domain of quant.)}, W \neq \emptyset, R \subseteq W \times W \\ v(w) &\subseteq D, v(c) \in D, v_w(P) \subseteq D^n, v_w(\mathfrak{E}) = D_w. \end{split}$$

 $\begin{aligned} v_w(\exists xA) &= 1 \text{ iff for some } d \in D_w, v_w(A_x(k_d)) = 1 \\ v_w(\forall xA) &= 1 \text{ iff for all } d \in D_w, v_w(A_x(k_d)) = 1. \\ v_w(\mathfrak{E}a) &= 1 \text{ iff } v(a) \in D_w. \\ \Sigma &\models A \text{ iff for every } I = \langle D, W, R, v \rangle, \text{ and every } w \in W: \text{ (If } v_w(B) = 1, \text{ for all } B \in \\ \Sigma, \text{then } v_w(A) = 1 \text{).} \end{aligned}$

$$\begin{array}{cccc} \forall xA, i & \exists xA, i \\ \swarrow & \searrow & & \downarrow \\ \neg \mathfrak{E}a, i & A_x(a), i & \mathfrak{E}c, i \\ & & \downarrow \\ & & & \downarrow \\ & & & A_x(c), i \end{array}$$

Syntax: $\delta = \frac{\varphi:\psi_1,\ldots,\psi_n}{\chi}$ where pre $(\delta) = \varphi$, just $(\delta) = \{\psi_1,\ldots,\psi_n\}$, cons $(\delta) = \chi$. Pi = $(\delta_0, \delta_1,\ldots)$ with $\delta_0, \delta_1,\ldots \in D$, s.t. for all $i, j: \delta_i \neg \delta_j$ if $i \neq j$.

- $\operatorname{In}(\Pi) = \operatorname{Th}(M)$ with $M = W \cup \{\operatorname{cons}(\delta) | \delta \in \Pi\}$
- δ applicable to S, if pre(δ) $\in S$, and $\neg \psi_i \notin S$, for all $\psi_i \in \text{just}(\delta)$
- Π is called proces of T, iff δ_k app. to $\ln(\Pi[k])$ for every k s.t. $\delta_k \in \Pi$
- Π closed if you can not apply any δ_k anymore.
- Out(Π) = { $\neg \Psi$ |There is $\delta \in \Pi$ s.t. $\psi \in just(\delta)$ }

2A 2023-2024

• Π successful if $In(\Pi) \cap Out(\Pi) = \emptyset$. Otherwise failed.

Set formula E, is extension to default T, fif there is some closed and successful process of T s.t. $E = In(\Pi)$.

 $(W, D) \succ_s$ iff φ in all extensions of (W, d)

 $(W, D)|_{c}$ iff φ in at least one extension of (W, D).

If T has no extensions, then $(W, D) \models_s \varphi$ for every φ , and $(W, D) \models_c \varphi$ for no formula φ .